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Abstract

Background: Estimating the causal effect of pollution on human health is integral for evaluating 

returns to pollution regulation, yet separating out confounding factors remains a perennial 

challenge.

Methods: We use a quasi-experimental design to investigate the causal relationship between 

regulation of particulate matter smaller than 2.5 micrograms per cubic meter (PM2.5) and mortality 

among those 65 years of age and older. We exploit regulatory changes in the Clean Air Act 

Amendments (CAAA). Regulation in 2005 impacted areas of the United States (U.S.) 

differentially based on pre-regulation air quality levels for PM2.5. We use county-level mortality 

data, extracted from claims data managed by the Centers for Medicare & Medicaid Services, 

merged to county-level average PM2.5 readings and attainment status as classified by the EPA.

Results: Based on estimates from log–linear difference-in-differences models, our results 

indicate after the CAAA designation for PM2.5 in 2005, PM2.5 levels decreased 1.59 micrograms 

per cubic meter (95% CI 1.39-1.80) and mortality rates among those 65 and older decreased by 

0.93% (95% CI 0.10%-1.77%) in nonattainment counties, relative to attainment ones. Results are 

robust to a series of alternate models, including nearest-neighbor matching based on propensity 

score estimates.

Conclusion: This analysis suggests large health returns to the 2005 PM2.5 designations, and 

provides evidence of a causal association between pollution and mortality among the Medicare 

population.
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Introduction

Estimating the causal effect of pollution on human health is integral for assessing costs and 

benefits of pollution regulation. Pollution correlates with many factors that affect both 

economic and health outcomes independent of pollution, complicating the isolation of 

causality. For example, pollution can reduce the amenity value of living in a particular area 

and therefore affect housing prices [1]. As a result, people may select into high and low 

pollution areas in non-random ways. Simply comparing health outcomes of populations in 

more polluted places to other populations would capture not only differences in pollution 

levels, but differences in a set of other hard-to-measure factors.

Quasi-experimental designs can help isolate causal relationships by leveraging an event that 

effectively assigns populations into either “treatment” or “control” groups exposed to 

differing levels of pollution (or, in our case, changes in levels of pollution). A key feature is 

that the event designating treatment status is determined by policy, nature, or some other 

external factor such that being exposed to the treatment – which usually varies by both 

geography and time – is ideally as good as randomly assigned. Applied research uses a 

variety of quasi-experimental designs, particularly in the social sciences, to estimate causal 

effects in contexts such as pollution regulations [2].

Here we use a quasi-experimental design in an effort to isolate the causal relationship 

between regulation of particulate matter smaller than 2.5 micrograms per cubic meter 

(PM2.5) and reductions in PM2.5 and associated mortality. We exploit changes in air quality 

standards from the Clean Air Act Amendments (CAAA), beginning in 2005, that impacted 

areas of the United States (U.S.) differentially based on prior air quality levels. As we 

demonstrate below, this led to substantial reductions in pollution in some areas, but not 

others. In particular, the National Ambient Air Quality Standards (NAAQS) for PM2.5 

stipulate an acceptable threshold for the annual mean of PM2.5, based on a 3-year average, 

of 15 micrograms per cubic meter (µg/m3) [3] (Current standards stipulate a threshold of 12 

μg/m3). If PM2.5 levels in a county exceed the threshold, the federal government classifies 

the county in violation of the CAAA and applies a status of “nonattainment”. When this 

occurs, the state where the county resides must develop a State Implementation Plan (SIP), 

requiring approval from the US Environmental Protection Agency (EPA), detailing measures 

the state will take to lower PM2.5 levels in nonattainment counties [3]. Although the NAAQS 

for annual PM2.5 occurred in 1997, the federal government designated attainment status in 

2005, assigning attainment status on PM2.5 values from 2001 through 2003. Once the EPA 

began enforcing the CAAA in 2005, it caused a stark reduction in pollution in nonattainment 

counties relative to attainment counties.

Our empirical model exploits both the timing of the policy and its differential effect across 

counties depending on attainment status. We compare changes in mortality over time within 

treatment counties (in violation of the NAAQS in 2005) to the changes in mortality over 
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time within control counties (in compliance with NAAQS in 2005). For valid causal 

inference, this quasi-experimental “difference-in-differences” approach assumes the policy-

induced changes in pollution over time are unrelated to other factors determining health 

once we factor out baseline differences across counties and nationwide secular trends. We 

compare results from this difference-in-differences model with an associational model 

estimating the relationship between changes in pollution over time, regardless of attainment 

status.

We build on a large literature documenting a sizable relationship between pollution and 

health outcomes. Some of the earliest examples of quasi-experimental designs on air 

pollution are studies by Pope and co-authors ([4]; [5]; [6]), which examine changes in 

pollution resulting from a labor strike-driven closure of a steel mill, and showed local 

improvement on a range of morbidity measures. Other quasi-experimental papers focus on 

the NAAQS for total suspended particles from the 1970 and 1977 CAAAs. [7] focus on 

adult mortality; [8] on fetal mortality; and [9] on exposure during early childhood and 

changes in adult earnings. We build on the successful design of these previous studies, while 

furthering the research on environmental policy and health outcomes by exploiting the more 

recent NAAQS with respect to PM2.5.

Data

Our raw data are at various degrees of time aggregation. Given attainment status, population, 

and mortality data are annual and at the county level, we aggregate all other data to the 

county-by-year level as well. All data span the years 2000-2013. The online appendix table 

shows how missing values across the various data sets affect the sample size by year.

Mortality data.—We use mortality data extracted from the claims managed by the Centers 

for Medicare & Medicaid Services. Among Medicare beneficiaries, we identify all deaths 

along with information on year of death, age, gender, and Federal Information Processing 

Standard (FIPS) code of residence. Our primary outcome is the log of deaths per 100,000 

population 65 years or older in a given county/year. Some models examine deaths by age 

and gender subgroups; there, we use the relevant population in the denominator to construct 

mortality rates (e.g., 65 and older males).

Pollution data.—We calculate daily 24-hour average PM2.5 (in micrograms/cubic meter) 

for each county as a simple average of all monitors within a county (if multiple monitors 

exist). After aggregating to the annual level, we merge these data to the Medicare data using 

the FIPS code of residence.

Age denominator.—To construct a mortality rate, we divide death counts by the 

estimated relevant population in a given county and year. The population data come from 

National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program. 

We also include log of the relevant population as a control in our main regressions. This 

addresses the possibility that population growth might correlate with unobservable 

confounders.
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Attainment status.—Using the “Green Book Nonattainment Areas” hosted on the EPA’s 

website, we obtained the attainment status of each county in the US to identify them as 

treatment or control counties as of 2005 (Obtained from https://www.epa.gov/green-book as 

of May 20th, 2019.) The definition of the law allows for counties to be in “partial 

attainment,” where only certain geographic areas of the county are classified as in 

nonattainment. For our purposes, we consider these partial attainment counties as treated as 

they were still subject to regulation.

Weather data.—We control for temperature and rainfall to address the concern that 

attainment status spuriously correlates with weather, which might affect mortality risk 

independent of pollution [10]. We use data from the Global Historical Climate Network 

Daily (GHCND) data, maintained by the National Oceanic and Atmospheric Administration 

[11]. The GHCND data have information on (daily) maximum and minimum temperature 

and total precipitation for over 4,000 weather stations throughout the United States during 

our time period. We calculate weather conditions at the county level using weather stations 

within 100 miles of the county centroid and inverse distance weights.

Economic data.—We use income per capita and share of population employed, available 

annually at the county level from the Bureau of Economic Analysis (BEA) Regional 

Economic Accounts (http://bea.gov/regional/index.htm), as controls to mitigate potential 

confounder bias.

Migration data.—We bring in migration data to assess whether populations moved as a 

result of improvements in air quality. We use county-level migration data from the Internal 

Revenue Service (IRS) (Available at https://www.irs.gov/statistics/soi-tax-stats-migration-

data, accessed May 20th, 2019). Although the IRS data do not measure population per se, 

they report the number of returns and exemptions claimed on tax returns, which serve as a 

proxy for the number of households and the population, respectively. Data record the 

number of tax returns for movers changing county of residence in a given year, both in terms 

of inflows and outflows. We calculate net changes in migration using the number of inflows 

minus outflows. The IRS data do not allow for us to test for differential migratory responses 

by certain subpopulations. Nonetheless, observing no migratory response across the whole 

population could help rule out the possibility that people with differential health 

characteristics were more or less likely to migrate, which would bias estimates.

Methodology

We have two main estimating equations: a standard difference-in-differences estimator and a 

more flexible “event study” design. Equations (1) and (1’) show the standard difference-in-

differences models for PM2.5 and mortality:

PM2.5ct = α(Treatment) ∗ (Year ≥ 2005) + δc
p + λt

p + εct
p (1)
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log(mortality rate)ct = π(Treatment) ∗ (Year ≥ 2005) + μ∗log(population)ct + δc
m

+ λt
m + εctm (1’)

Equation (1) tests if the policy reduced pollution in treatment counties relative to control 

counties and equation (1’) tests if the policy reduced the log of the mortality rate in 

treatment counties relative to control counties. Observations are at the county-by-year level, 

where the subscript c and t indicate county and time, respectively. Superscript p indicates the 

PM2.5 regression model, while m indicates the mortality regression model. “Treatment” is 

the nonattainment status indicator, taking a value of 1 if the county is in nonattainment and 0 

otherwise. “Year≥2005” is the post-regulation indicator, taking a value of 1 for the years 

2005 and beyond and 0 otherwise. α and π are difference-in-differences estimates: the 

change in outcomes for treatment counties, as compared to control counties, after the 

NAAQS regulations come into effect. δc is a vector of county fixed effects (controlling for 

baseline differences between treatment and control counties) and λt is a vector of year fixed 

effects (controlling for common changes in outcomes across all counties before and after the 

policy). Although population is used in the denominator of the dependent variable, μ 

mitigates confounders related to population growth over time.

To better trace out the pre- and post-policy differences between treatment and control 

counties, equations (2) and (2’) show a more flexible “event study” design:

PM2.5ct = ∑t ≠ 2005αt(Treatment) * (Year = t) + δc
p + λt

p + εct
p (2)

log(mortality rate)ct = ∑t ≠ 2005πt(Treatment) * (Year = t)
+ μm * log(population)ct + δc

m + λt
m + εctm (2’)

These equations are similar to (1) and (1’), but here αt and πt flexibly capture the effects of 

treatment over time by using separate dummy variables for each year. We interact these 

dummy variables with attainment status for PM2.5 in 2005 (“Treatment”). We omit 2005 in 

the yearly interactions, making αt and πt the difference between treatment and control 

counties in year t as compared to the difference between treatment and control counties in 

the year 2005.

In all mortality regressions, we weight by the relevant group population to account for the 

accuracy of the rate as the dependent variable. We use no weights in regressions with 

pollution as the outcome. We cluster all error terms at the county level to flexibly account 

for the group nature of data [12]. All individuals in the same county face the same pollution 

and attainment status, and clustering allows for serial correlation in the error term within a 

given county over time. The cluster estimator also allows for heteroskedastic errors.

We use these empirical models to address two questions: (1) did attainment status under the 

NAAQS affect PM2.5 levels, and (2) did attainment status reduce mortality? The results 

reveal the causal effect of the policy on PM2.5 and mortality. Our difference-in-differences 
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model plausibly mitigates concerns of confounders (e.g., general health or macroeconomic 

trends) that spuriously correlate with the policy.

To assess the internal validity of our difference-in-differences model (i.e., evaluate how well 

attainment counties serve as controls for nonattainment counties), we provide two tests. 

First, we assess whether adding additional control variables (meteorologic elements and 

economic variables) to our equation affects estimates of the coefficients of interest. If adding 

these variables does not affect our coefficients of interest, this suggests the change in PM2.5 

is uncorrelated with other factors correlated with the included controls. Second, we estimate 

models using migration variables as the outcome in equation (2). If we find attainment status 

is not statistically related to migration, this provides evidence consistent with the hypothesis 

that compositional shifts in the population are not an important confounder of the effects of 

the CAAAs on mortality.

With difference-in-differences models, a common concern is differential trending in 

treatment and control groups even absent treatment. Our event study design allows us to 

explore if such trends exist pre-treatment, and, as we demonstrate below, we find suggestive 

evidence of some differential trends in mortality. To address this issue, as a robustness check 

we use nearest neighbor matching based on a propensity score estimate of the probability of 

attainment status. The independent variables used to estimate the propensity score are the 

mortality counts and population for each year from 2000 to 2005, where we sample without 

replacement.

To identify the causal effect of PM2.5 on mortality itself requires further assumptions. To 

that end, we also perform an instrumental variables (IV) analysis by dividing the mortality 

coefficient (π) by the PM2.5 coefficient (α), to obtain an estimate of the effect of PM2.5 on 

mortality. This is equivalent to a Wald IV estimator [13], where the standard error of the 

estimate is calculated via two stage least squares [14]. The two assumptions for a valid IV 

are: (1) the policy has an effect on PM2.5, and (2) the only route through which the policy 

affects mortality is through PM2.5. While we can directly test the first assumption (α>0), 

there is no formal test for the second. A specific concern is that NAAQS regulation affected 

mortality through other channels, such as co-pollutants. We interpret our IV estimates with 

this caveat in mind and generally focus our mortality discussion around the causal effects of 

the policy (and not PM2.5).

For comparison purposes, we also estimate a model that compares the within-county 

changes in PM2.5 with the within-county changes in mortality rates according to a standard 

ordinary least squares (OLS) model:

log(mortality ratect) = β∗PM2.5 + μw ∗ log(population)ct + δc
w + λt

w + εctw (3)

The term β gives the percent change in the mortality rate from a 1 μg/m3 change in PM2.5. 

All terms are defined as before, where the superscript w indicates the “within” regression 

model for mortality. This model provides a useful benchmark to compare to our IV 

estimates.
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We perform all statistical analyses using the computer program Stata, version 15.0 

(StataCorp LP, College Station, TX). We make use of several user-written Stata commands: 

psmatch2, ftools, reghdfe, and outreg2. Each of these commands are available on the Boston 

College Statistical Software Components (SSC) archive. An independent IRB review 

performed by Chesapeake IRB (now Advarra) determined that the project did not constitute 

human subjects research.

Results

Figure 1 shows a map of treatment (nonattainment) and control (attainment) counties for our 

final analysis sample. There are 137 nonattainment counties and 467 control counties in 

2006, though this varies by year because we do not restrict our sample to a balanced panel of 

counties in order to preserve sample size. The included counties represent around 200 

million people in the US (shown in the eAppendix).

Table 1 shows summary statistics for our data. The annual mortality rate is 4.843 per 1,000 

population over 65; annual average PM2.5 is 10.84 μg/m3. The lower panel of Table 1 shows 

these values separately for attainment and nonattainment areas before and after the NAAQS. 

In both attainment and nonattainment areas, the mortality rate fell by approximately 0.5 per 

1,000. PM2.5 levels decreased from 11.0 to 9.3 in attainment areas and 15.3 to 12.0 in 

nonattainment areas.

Table 2 presents results from the difference-in-differences estimate based on equation (1). 

Column 1 shows the estimate for particulates, which implies PM2.5 in treatment counties 

decreased by 1.591 μg/m3 (95% CI −1.797, −1.386) relative to control counties after the 

AQS for PM2.5. Column 2 shows the change in log mortality rates, estimated at .009 (95% 

CI −.018, −.001), or an approximate 1% decrease for treatment counties relative to control 

counties.

We combine these two estimates to calculate the IV effect of PM2.5 on mortality, shown in 

Table 3. Assuming the policy exclusively affects mortality via changes in PM2.5, the IV 

estimate indicates that a 1 μg/m3 change in PM2.5 causes a .006 change in the over-65 log 

mortality rate (95% CI .001-.011), which is a 0.59% change. This assumption is strong, and 

as such we favor the causal interpretation for a link between the policy and mortality. The 

within estimates, based on equation (3), suggest a .002 increase in mortality (95% 

CI .000, .003) from a 1 μg/m3 increase in PM2.5, which is a .16% change.

Our next results illustrate the effect of the policy over time using our event study design 

based on equation (2). Figure 2 graphs the coefficient estimates and 95% confidence 

intervals for estimates for PM2.5. Levels decreased after the PM2.5 regulation took hold in 

2005; the coefficient for the year 2006 implies PM2.5 levels dropped by 1.05 micrograms per 

cubic meter in nonattainment areas relative to attainment counties just one year after the 

policy went into effect. The difference in pollution between nonattainment and attainment 

counties increases in the years since the policy’s implementation, while differences in the 

years preceding the policy are close to zero, suggesting pre-existing trends in PM2.5 are not 

systematically different in attainment vs. nonattainment counties.
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Figure 3 presents the event study estimates based on equation (2’) for mortality. We see 

mortality for all individuals over age 65 decreased in nonattainment counties, relative to 

attainment counties, after the PM2.5 regulation took hold. Results suggest that by 2013, 

mortality dropped by approximately 1% in nonattainment counties relative to attainment 

counties. Health improvements appear gradual in the early years after the policy, growing 

over time. We do not observe differential trends in mortality prior to the introduction of the 

policy in 2005, suggesting pre-existing trends in mortality rates are unlikely to be a source of 

bias. Combined with the results in Figure 2, these results show abatement of PM2.5 moves in 

line with the decreases in mortality, suggesting a contemporaneous effect of PM2.5 on 

health.

Table 4 presents a series of robustness checks for the mortality results. Column 1 adds the 

weather variables and economic controls. Consistent with the exogeneity of the policy 

change, adding these variables has minimal impact on our coefficients of interest or standard 

errors, though it does change our sample size slightly due to occasional missing values in the 

additional covariates. Column 2 shows results using a nearest-neighbor matching approach 

to better control for any trends in mortality before the AQS. Estimates are again quite 

similar, though with the substantial reduction in observations our confidence intervals widen. 

Column 3 replaces nearest-neighbor matching with restricting to a common propensity score 

support, and results are again quite similar.

The results in Figure 4 further probe the role of pre-existing trends by reproducing the 

mortality results in the event study framework using nearest neighbor matching. Compared 

with Figure 3, pre-trends look even more similar when we perform matching, with all 

coefficient estimates closer to zero. The magnitudes of the effects of the regulations in the 

post-treatment period is comparable to those shown in Figure 3, suggesting any possible 

differences in pre-trends do not explain our main findings.

Table 5 presents results exploring heterogeneity of mortality estimates by gender and age 

(note our sample changes slightly by subgroups given the occasional cells with zero deaths, 

which are undefined for the log function). The estimates in columns 1 and 2 show that the 

effects on mortality are smaller for males than females, though confidence intervals are 

large. Column 3 shows the mortality effects for only those over age 75 are larger than those 

over age 65 (including those over 75), though again confidence intervals are broad.

We next explore the effect of attainment status on migration. If people respond to improved 

pollution levels by migrating, changes in mortality may be due to changes in population 

composition rather than a direct effect of PM2.5. Table 6 shows attainment status has a small 

estimated relationship with migration as measured by tax returns filed or tax exemptions 

claimed. We do not use the log function here, as net returns and exemptions can both be 

negative.

Discussion

Our study has attempted to isolate the causal effect of PM2.5 regulation through the NAAQS 

on PM2.5 concentrations and mortality using a quasi-experimental difference-in-differences 
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research design. As a point of comparison, [15] also examined mortality rates among the 

Medicare population using particulate matter NAAQS regulations. In a comparison of 

mortality rates across different counties between 2010 and 2012, they found nonattainment 

designation was associated with a decrease in mortality rates of approximately 1.251 per 

1,000 (95% CI −2.631, 0.108). Using our average mortality rate of 48 per 1,000, our 

estimate finds counties in nonattainment saw 0.436 fewer deaths per 1,000, putting our 

estimates within prior estimate confidence intervals. In similar research, [16] find 

nonattainment for particulate matter smaller than 10 micrometers (PM10) reduced mortality 

by 1.08 deaths per 1,000 among Medicare beneficiaries.

Our analysis uses a log–linear regression rather than a Poisson regression because the 

mortality data are annual aggregates and are far from zero; the mean number of counts is 

48.4 and in only two instances do we observe zero deaths in a county–year. Poisson 

regression is most appropriate when counts are low; otherwise they approximate a linear 

regression model. The log–linear regression yields a coefficient with a comparable 

interpretation as the coefficient from a Poisson regression.

We find large estimated decreases in both pollution and mortality risk. Several caveats 

remain in interpreting our results. First, changes in attainment status could lead to other 

changes in population characteristics that correlate with mortality, suggesting a potential 

source of unobserved confounding. We provide two pieces of evidence that diminish this 

concern: 1) estimates are robust to the inclusion of various economic and weather controls; 

and 2) estimates show no detectable migratory response to NAAQS.

Second, in our IV estimate, the AQS for PM2.5 may have affected other pollutants as well, 

hindering the interpretation of this estimate as the effect of PM2.5 on mortality. For example, 

emission control strategies that limit PM2.5 may also limit ozone, which impacts mortality 

[17]. While these other pollutants likely have a smaller effect on mortality, we cannot rule 

out that some of the IV estimate may be driven by changes in the other pollutants.

Third, our estimates may violate the stable unit treatment value assumption–reduced 

emissions in a treatment county may affect pollution concentrations and therefore health 

outcomes in neighboring counties. Atmospheric modeling suggests particulate emissions can 

travel hundreds of miles with predominant wind patterns [18]. If such spillovers contaminate 

our control group, they bias both our PM2.5 and mortality estimates downward. Table 1 hints 

at this possibility, as PM2.5 decreased in attainment areas (though by less than in 

nonattainment areas). Our nearest neighbor matching algorithm limits some of this concern–

the control group focuses on counties most similar in mortality rates, which may or may not 

be geographically proximate to treatment counties. To the extent our control counties benefit 

from pollution reductions in neighboring treated counties, our estimates understate the true 

effects.

Conclusion

Using a quasi-experimental technique that exploits change in ambient air quality standards 

for PM2.5, this paper presents two main findings. First, air standards reduced ambient PM2.5 
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levels in counties classified in nonattainment relative to attainment. Second, there was an 

accompanying reduction in mortality rates for those age 65 years and older. Several 

robustness checks support a causal interpretation of these results. Calculating an 

instrumental variables estimate, we find that a 1 μg/m3 reduction in PM2.5 reduces over 65 

mortality rates by 0.6%. Our focus on policy variation, rather than per-unit pollution levels, 

provides more robust evidence on the causal link between pollution policy and human 

health. As many important reductions in pollution result from policy intervention, this 

analysis provides an important step forward in pollution-health science.
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Acknowledgments

Sources of financial support: This work is sponsored by a consortium of trade organizations, including the 
American Petroleum Institute, the American Forest & Paper Association, the American Wood Council, and the 
National Council for Air and Stream Improvement; the ExxonMobil Corporation also contributed funding.

References

[1]. Chay KY, Greenstone M (2005). Does Air Quality Matter? Evidence from the Housing Market. 
Journal of Political Economy 113(2): 376–424.

[2]. Graff Zivin J, Neidell MJ (2013). Environment, Health, and Human Capital. Journal of Economic 
Literature 51 (3): 689–730.

[3]. Environmental Protection Agency, Code of Federal Regulations 40 CFR Part 50 (2006). National 
Ambient Air Quality Standards for Particulate Matter. Federal Register 71(200).

[4]. Pope CA III (1989). Respiratory disease associated with community air pollution and a steel mill, 
Utah Valley. American Journal of Public Health 79(5): 623–8. [PubMed: 2495741] 

[5]. Pope CA III, Schwartz J, Ransom MR (1992). Daily mortality and PM10 pollution in Utah Valley. 
Archives of Environmental Health 47(3): 211–7. [PubMed: 1596104] 

[6]. Ransom MR, Pope CA III (1995). External health costs of a steel mill. Contemporary Economic 
Policy 13(2): 86–97.

[7]. Chay KY, Greenstone M, Dobkin C (2003). The clean air act of 1970 and adult mortality. Journal 
of Risk and Uncertainty 27(3): 279–300.

[8]. Sanders NJ, Stoecker C (2015). Where have all the young men gone? Using sex ratios to measure 
fetal death rates. Journal of Health Economics 41: 30–45. [PubMed: 25655338] 

[9]. Isen A, Rossin-Slater M, Walker WR (2017). Every Breath You Take - Every Dollar You’ll Make: 
The Long-Term Consequences of the Clean Air Act of 1970. Journal of Political Economy 
125(3).

[10]. Barreca A, Clay K, Deschenes O, Greenstone M, Shapiro J (2016). Adapting to Climate Change: 
The Remarkable Decline in the U.S. Temperature-Mortality Relationship over the 20th Century. 
Journal of Political Economy, 124(1): 105–59.

[11]. Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012). An overview of the Global 
Historical Climatology Network-Daily Database. Journal of Atmospheric and Oceanic 
Technology 29, 897–910.

[12]. Williams RL (2000). A note on robust variance estimation for cluster-correlated data. Biometrics 
56: 645–646 [PubMed: 10877330] 

[13]. Wald A (1940). The Fitting of Straight Lines if Both Variables Are Subject to Error. Annals of 
Mathematical Statistics 11(3): 284–300.

[14]. Wooldridge J (2010). Econometric Analysis of Cross Section and Panel Data, Second Edition 
MIT Press: Cambridge, MA.

Sanders et al. Page 10

Epidemiology. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[15]. Zigler CM, Choirat C, Dominici F. (2018) Impact of National Ambient Air Quality Standards 
Nonattainment Designations on Particulate Pollution and Health. Epidemiology 29(2):165–174. 
[PubMed: 29095246] 

[16]. Zigler CM, Kim C, Choirat C, Hansen JB, Wang Y, Hund L, Samet J, King G, Dominici F 
(2016). HEI Health Review Committee. Causal Inference Methods for Estimating Long-Term 
Health Effects of Air Quality Regulations. Res Rep Health Eff Inst 187:5–49.

[17]. Bell ML, Dominici F, Samet JM (2005). A meta-analysis of time-series studies of ozone and 
mortality with comparison to the National Morbidity, Mortality, and Air Pollution Study. 
Epidemiology 16:436–445. [PubMed: 15951661] 

[18]. Muller NZ, Mendelsohn R (2007). Measuring the Damages of Air Pollution in the United States. 
Journal of Environmental Economics and Management 54(1): 1–14.

Sanders et al. Page 11

Epidemiology. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Map of Nonattainment Counties

Notes: Black and gray shaded areas represent counties in our sample. The black shade are 

the nonattainment counties as of 2005, while the gray are the attainment counties.
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Figure 2. 
Event Study Estimates for PM2.5

Notes: Estimates represent the difference in PM2.5 concentrations for nonattainment counties 

vs. attainment counties. Dotted lines represent 95% confidence interval based on standard 

errors clustered on county. All regressions include year dummy variables, county fixed 

effects, income per capita, share employed, mean temperature, maximum temperature, and 

precipitation. The vertical line represents when the air quality standard for PM2.5 began. 

2005 is the reference category.
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Figure 3. 
Event Study Results for Mortality Rate

Notes: Estimates represent the difference in log mortality per 100,000 population for 

nonattainment counties vs. attainment counties. Dotted lines represent 95% confidence 

interval based on standard errors clustered on county. All regressions include year dummy 

variables, county fixed effects, log of population, income per capita, share employed, mean 

temperature, maximum temperature, and precipitation. We weight regressions by population. 

The vertical line represents when the air quality standard for PM2.5 began. 2005 is the 

reference category.
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Figure 4. 
Event Study Results for Mortality Rate using Nearest Neighbor Matching

Notes: Estimates represent the difference in log mortality per 100,000 population for 

nonattainment counties vs. attainment counties based on nearest neighbor matching using 

the estimated propensity score. The propensity score is a logit model where the dependent 

variable is attainment status and the independent variables are raw over 65 mortality and 

population over 65, separately for the years 2000-2005. Dotted lines represent 95% 

confidence interval based on standard errors clustered on county. All regressions include 

year dummy variables, county fixed effects, log of population, income per capita, share 

employed, mean temperature, maximum temperature, and precipitation. We weight 

regressions by population. The vertical line represents when the air quality standard for 

PM2.5 began. 2005 is the reference category.
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Table 1.

Summary Statistics

Variable Mean Std. Dev.

mortality rate (per 1,000) 4.843 7.500

PM2.5 (μg/m3) 10.84 3.060

income per capita ($) 41,349 11,909.75

share employed 0.58 0.148

mean temperature 56.91 7.970

maximum temperature 67.84 8,123

Precipitation 11.15 4.308

net returns (per 100,000) 25.20 570.290

net exemptions (per 100,000) 91.85 1242.387

mortality rate (per 1,000) non-attainment attainment

year < 2006 5.131 5.084

year ≥ 2006 4.662 4.617

PM2.5 (μg/m3) non-attainment attainment

year < 2006 15.29 10.99

year ≥ 2006 11.96 9.33

Notes: Number of observations = 8275 for all variables in Panel A except for net returns and exemptions, which = 8272.
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Table 2.

Difference-in-Differences (DiD) Estimates for PM2.5 and Mortality

1 2

Dependent variable PM2.5 Log Mortality Rate

DiD estimate −1.591
[−1.797, −1.386]

−0.009
[−0.018, −0.001]

Observations 8275 8275

R-squared 0.873 0.951

Notes: 95% confidence intervals based on standard errors clustered on county in brackets. All regressions include year dummy variables and county 
fixed effects. Regression in column 2 also control for log of population and is weighted by population.

Epidemiology. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sanders et al. Page 18

Table 3.

Instrumental variable and within estimates of PM2.5 on Mortality

Regression model Instrumental variables Within county

PM2.5 0.006
[0.001, 0.011]

0.002
[0.000, 0.003]

Observations 8275 8275

R-squared 0.951 0.951

Notes: 95% confidence intervals based on standard errors clustered on county in brackets. All regressions include year dummy variables, county 
fixed effects, log of population and are weighted by population. Instrumental variables regression uses attainment status*I(year≥2006) as an 
instrument for PM2.5.
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Table 4.

Sensitivity Analysis for Difference-in-Differences (DiD) Estimates for Mortality

1 2 3

Dependent variable Additional Covariates Nearest Neighbor Matching Common Support

DiD estimate −0.008
[−0.016, −0.000]

−0.004
[−0.014, 0.006]

−0.008
[−0.0169, 0.000]

Observations 7828 3372 6906

R-squared 0.953 0.96 0.953

Notes: 95% confidence intervals based on standard errors clustered on county in brackets. All regressions include year dummy variables, county 
fixed effects, log of population, income per capita, share employed, mean temperature, maximum temperature, and precipitation. The regressions in 
columns 2 and 3 are based on nearest neighbor matching and a common support, respectively, using the estimated propensity score. All regressions 
are weighted by population.
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Table 5.

Heterogeneity of Difference-in-Differences (DiD) Estimates for Mortality

1 2 3

Dependent variable Log Male Mortality Rate Log Female Mortality Rate Log Mortality Rate Over 75

DiD estimate −0.004
[−0.012, 0.005]

−0.012
[−0.021, −0.002]

−0.011
[−0.019, −0.002]

Observations 8272 8274 8275

R-squared 0.933 0.930 0.916

Notes: 95% confidence intervals based on standard errors clustered on county in brackets. All regressions include year dummy variables, county 
fixed effects, log of the relevant subgroup population, income per capita, share employed, mean temperature, maximum temperature, and 
precipitation. All regressions are weighted by relevant subgroup population.
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Table 6.

Difference-in-Differences (DiD) Estimates for Net Tax Returns and Exemptions

1 2

Dependent variable Net Returns Net Exemptions

DiD estimate 9.394
[−85.975, 104.763]

15.058
[−210.922, 241.038]

Observations 8274 8274

R-squared 0.495 0.542

Notes: 95% confidence intervals based on standard errors clustered on county in brackets. All regressions include year dummy variables, county 
fixed effects, and economic and weather controls. Net returns and exemptions are defined as (inflows – outflows) / (population/100,000).
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