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We estimate the effects of long-run pollution exposure on mortality by exploiting the United States Acid
Rain Program (ARP) as a natural experiment. We use a difference-in-differences design to compare
changes in adult mortality over time driven by installations of sulfur controls on power plants, combined
with a model of atmospheric pollution transport. We find that sulfur controls reduced pollution imme-
diately, with smaller relative improvements in the following years. Mortality reductions started small
and grew steadily, suggesting cumulative health effects over time. We also find persistent mortality
effects for those 35–64 years of age, suggesting the ARP had large productivity gains for the working-
age population.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

While the Environmental Protection Agency (EPA) attributes
over 90 percent of the monetized benefits from environmental
quality improvements to changes in long-run exposure (Dominici
et al., 2014), nearly all quasi-experimental estimates linking pollu-
tion and health are based on short-run pollution changes. Exoge-
nous, temporary shocks to pollution can help with causal
identification (Graff Zivin and Neidell, 2012; Deschenes et al.,
2017; Schlenker and Walker, 2016; Deryugina et al., 2019), but fail
to identify longer-run cumulative effects, as they largely affect the
timing of exposure without substantively affecting lifetime expo-
sure. Behavioral responses to these shocks, such as residential sort-
ing and employment changes, complicate identification of
long-run effects (Walker, 2013; Banzhaf and Walsh, 2008). There-
fore, even if an initial change in pollution is exogenous, exposure is
likely to become endogenous over time. Quantifying effects from
long-run exposure requires a long-lasting, exogenous change in
ambient pollution without accompanying behavioral responses.

In this paper, we estimate the effects of long-run pollution
exposure on mortality by exploiting the United States Acid Rain
Program (ARP), a cap-and-trade regulation to control sulfur dioxide
(SO2) emissions, which avoids many of the issues associated with
identifying long-run effects. First, the ARP created an immediate
and persistent drop in SO2, a precursor gas in the formation of par-
ticulate matter smaller than 2.5 micrometers (PM2.5)1; PM2.5 is a
pollutant with detrimental effects on human health (see
Environmental Protection Agency (2004) for a comprehensive
review). This one-time drop in pollution allows for an event study
analysis to explore dynamic effects.

Second, the ARP regulated only certain SO2-intensive coal
plants. This lends to a design comparing changes in mortality over
time in counties most impacted by pollution from regulated plants
to changes in mortality in counties with little to no related expo-
sure. This mitigates bias from national trends changing over time
independent of pollution from coal-fired plants, such as business
cycles, health care access, and technological advances.

Third, the vast distance both SO2 and PM2.5 travel once air-
borne subsumes many potential confounding general equilibrium
d (2004).
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effects. Households sorting in response to the economic effects of
the ARP will not bias estimates if such sorting remains within
the effective range of pollution transport from a given region.2

Given existing evidence that finds such changes in housing amenity
values occur at distances of less than 2 miles, long-distance residen-
tial sorting is likely to be limited.3

Fourth, the ARP generated limited economic spillovers. While
many environmental regulations often lead to job loss
(Greenstone, 2002; Walker, 2013), which can have independent
effects on health (Sullivan and vonWachter, 2009), this issue is less
relevant to the ARP as compliance costs and economic effects were
low (Schmalensee and Stavins, 2017).4 Moreover, the broad spread
of emissions beyond plants themselves subsumes local economic
effects, to the extent they exist, in the same way they deal with sort-
ing. We verify the ARP had negligible effects on income, employ-
ment, or migration, suggesting economic effects are unlikely to
bias estimates of health effects.

Our main research design involves an event study analysis
spanning 1985 through 2005. Treatment begins in 1995 with
enforcement of the ARP, and ends in 2005, before changes to the
SO2 permit market potentially shifted the relationship between
regulation and ambient emissions. To construct a measure of each
county’s exposure to treatment, we combine information on base-
line plant efficiency, sulfur control installations (e.g., sulfur scrub-
bers), and atmospheric migration of SO2. Since evidence suggests
PM2.5 drives mortality effects, we use a model of pollution trans-
port to project how SO2 disperses to form PM2.5 across the coun-
try (Muller et al., 2014). This treatment variable provides a basis for
a difference-in-differences model with varying exposure intensity.
We estimate the dynamic, reduced-form effects of the ARP, tracing
out the effects of the policy for up to 10 years, while also testing for
pre-trends in mortality leading up to the ARP as a check on identi-
fying assumptions.

Our results suggest reductions in long-term pollution concen-
trations from the ARP contributed to declining mortality rates.
Ambient SO2 emissions exhibit a large drop in 1995, with consid-
erably smaller reductions in the following years. Mortality, on the
other hand, declines more steadily over time, suggesting a cumula-
tive effect from lower sustained pollution levels. By 2005, a stan-
dard deviation increase in treatment exposure reduces all-age
cardiorespiratory mortality rates by approximately 0.4 percent.
Effects are largest for the age 35–64 population, in relative terms,
with a standard deviation increase reducing annual cardiorespira-
tory mortality rate by 1.6 percent.

Our results build on recent quasi-experimental studies address-
ing long-run exposure to pollution (Chen et al., 2013; Ebenstein
et al., 2017; Anderson, 2019). First, we provide a year-by-year
event study of changes in mortality, providing suggestive evidence
2 Although the ARP focused on SO2, where health effects are short-run and
respiratory-related, the eventual conversion to PM2.5 is what likely drives mortality.
Both the conversion process and harmful effects of PM2.5 were largely unknown at the
time, making it unlikely people sorted directly on PM2.5. To the extent the two
pollutants are correlated, by sorting on SO2 people may indirectly sort on PM2.5.

3 Using detailed micro-census data, Davis (2011) finds that power plant openings
affect housing values within 2 miles of a power plant. Davis’s (2011) results deal with
natural gas power plants, though similar results may extend to coal plants. Focused
on toxic plants, Currie et al. (2015) find that plant openings affect housing values
within half a mile of the plant. An additional relevant finding in Currie et al. is the
discord between the degree of sorting and the extent of the health effects: housing
values change within half a mile of the plant, but health effects extend beyond 1 mile.
This suggests that sorting is imperfect, and likely to be more imperfect the broader
the distance and more unknown the health effects. Walker (2013) and Greenstone
(2002) show that employment effects of regulation exist at the county level, though in
both cases the regulations they consider are county-level rather than plant-level as in
the ARP.

4 Regulatory costs were lower than predicted due to rapid technological innovation
in desulphurization and an unexpected increase in access to low-sulfur coal.
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that reductions in cumulative pollution exposure drove health
improvements over time. Second, we provide estimates for work-
ing age adults, a group where mortality represents a significant
loss in life expectancy and economic productivity, meaning exist-
ing estimates of the value of statistical life (VSL) more readily
apply.5

These estimates of the mortality effects of coal pollution are of
direct interest to policies centered on emissions from coal plants.
Global coal consumption has nearly doubled since the turn of the
century with rapid growth in developing nations such as China
and India6. In the United States, proposals targeting carbon emis-
sions often focus heavily on the role of coal plants, with potentially
large regulatory costs. Our estimates help in properly assessing the
mortality benefits of reducing coal plant emissions.
2. Background

2.1. The Acid Rain Program

The ARP was a provision of the EPA Clean Air Act Amendments
of 1990. The two-phase program regulates SO2-producing coal
power plants, with the goal of reducing SO2 levels to 50 percent
of 1980 levels. Phase I, beginning in 1995, regulated the 110 power
plants with the highest SO2 emissions, as measured in 1985. Phase
II, beginning in 2000, further limited emissions of Phase I plants
and added all remaining coal plants to the program. Both Phase I
and Phase II worked through an SO2-emission cap-and-trade sys-
tem. Plants could bank permits across time and buy and sell per-
mits with other plants. Phase I had a considerably larger impact
on SO2 emissions than Phase II, as firms had the ability to smooth
Phase II regulations by banking permits in advance. This motivates
our quasi-experimental research design, where we focus on the
timing of Phase I regulations.

The EPA distributed SO2 allowances to 263 heating units at the
110 plants based on baseline (1985–1987) heat input to minimize
regulatory gaming (Stavins, 1998). Heat input is a measure of the
amount of fossil fuel used to generate electricity, calculated in Bri-
tish thermal units (BTUs). Each year, plants report SO2 emissions to
the EPA for verification. For plants polluting in excess of held per-
mits, the EPA assigns an initial fee of $2,000 (adjusted for inflation)
per ton of overage and requires accounting for overages by pur-
chasing sufficient permits. As the program moved into Phase II,
the EPA further restricted the total number of available annual pol-
lution permits, with a final goal of 8.95 million permitted tons for
electric utilities by 2010. The EPA reports the program achieved
close to full compliance, leading to substantial decline in SO2 emis-
sions from regulated plants.

2.2. Health effects of SO2 and PM2.5

The primary aim of the ARP was reducing acid rain via regulat-
ing SO2. Acid rain has no known direct impacts of human health,
but the regulation likely improved health due to reductions in
associated pollutants.7 SO2 exposure health effects are primarily
short-run and respiratory-related, leading to increases in hospital
admissions for outcomes such as asthma exacerbations.8 Much of
the anticipated lasting health effects from the ARP arise from other
pollutants correlated with SO2 levels, namely PM2.5. Through an
atmospheric conversion process, SO2 produces sulfate particles, a
5 Existing studies typically focus on compensating differentials for workers across
industries. See Murphy and Topel (2006) for a discussion of VSL over the lifecycle.

6 "China and India drive recent changes in world coal trade," Today in Energy, U.S.
Energy Information Administration, Nov. 20, 2015.

7 See https://www.epa.gov/acidrain/effects-acid-rain, accessed March 9, 2017.
8 See Environmental Protection Agency (2009) for more information.

https://www.epa.gov/acidrain/effects-acid-rain
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portion of small-scale PM2.5.9 PM2.5 penetrates deep into the lungs
and enters the bloodstream, where it can lead to negative cardiovas-
cular and respiratory effects.10 Extended exposure to PM2.5 may
cause pulmonary and systemic oxidative stress and inflammation,
which can lead to vascular dysfunction, atherosclerosis, and altered
cardiac autonomic function (Brook et al., 2010). Effects from long-
run PM2.5 exposure may accrue after sustained, low-level exposure,
similar in spirit to cigarette smoking.11
3. Data and methods

Multiple stages link the ARP to reductions in ambient pollution
concentrations. Boilers at coal-fired plants produce SO2 emissions,
which can convert to PM2.5 and disperse to surrounding areas. The
ARP, by leading to the adoption of abatement techniques, reduces
SO2 emissions from a power plant, which ultimately reduces
PM2.5 in surrounding areas. Since measures of ambient PM2.5 con-
centrations – the pollutant most likely responsible for any mortal-
ity effects – do not exist throughout this entire period, we instead
focus primarily on the reduced form relationship between ARP
regulation-induced changes and mortality, though we also present
various ‘‘first stage” results to highlight the effect of the ARP on
pollution, the main channel for health effects.

Some plants responded to the ARP by installing new technolo-
gies on their boilers, thereby reducing SO2 emissions and associ-
ated PM2.5 concentrations. To examine this relationship, we
would ideally have detailed measures of 1) installation of boiler
controls; 2) boiler-specific SO2 emissions; 3) a model linking boiler
SO2 emissions to ambient PM2.5 concentrations; and 4) ambient
PM2.5 concentrations. We possess data on items (1) and (3), and
partial data on (2); the EPA provides boiler-level SO2 emissions
data every 5 years prior to the ARP and every year after the ARP.
There exist no data on (4) in the years prior to the ARP, as PM2.5
was not officially regulated by the EPA until 1997, and reliable data
on ambient concentrations before even 1999 is scarce, though we
do have SO2 ambient concentration data from the EPA monitoring
network.

Within these data limitations, we construct a reduced form
measure of exposure to pollution reductions using baseline plant
efficiency, boiler control installs and the transport of emissions
from these boilers. Given most pollution control installations,
and the most dramatic decreases in SO2 output, happen only once
during the period of our study (as we demonstrate below), this
yields a treatment exposure we can use to explore dynamic mor-
tality effects.
3.1. Data sources

We use county-level cause of death-coded mortality data from
the Centers for Disease Control (CDC) as our main outcome vari-
able. These data represent the universe of US deaths with informa-
tion on cause of death, classified by either ICD-9 (up to 1997) or
ICD-10 (1998 and beyond) cause of death codes. Restricted data
9 See ‘‘Sulfur Dioxide Basics”, provided by the Environmental Protection Agency
(available online at https://www.epa.gov/so2-pollution/sulfur-dioxide-basics,
accessed February 20, 2020).
10 See Environmental Protection Agency (2004) for a comprehensive review. Given
its diminutive size, PM2.5 also penetrates into buildings at a high rate, suggesting the
ability to avoid exposure is quite limited (Thatcher and Layton, 1995; Ozkaynak et al.,
1996; and Vette et al., 2001). For a review of quasi-experimental evidence of the
health effects of short-run exposure to pollutants such as SO2 and PM2.5, see Graff
Zivin and Neidell (2013).
11 Note the effects from long-run exposure are distinct from the long-term effects. For
example, several studies estimate the effect from early childhood exposure on adult
outcomes. While the outcomes are long-term, the exposure remains short-run. See
Sanders (2012), Isen et al. (2017), and Bharadwaj et al. (2017).
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include information on age at death and county of residence. As
no Phase I plants exist further west than approximately �96
degrees in latitude, we only include counties with centroids east
of �100 degrees latitude.

We obtain a list of all ARP plants and associated boilers from the
EPA Clean Air Markets Program Data. Information include boiler-
level SO2 emissions in tons, plant location, existence of installed
sulfur control technology, and the date of install. We observe the
year of sulfur control technology installations and the annual
SO2 emissions for all years 1995 and beyond, but prior to the
ARP annual plant-level SO2 emissions are only available every five
years (1980, 1985 and 1990). In our discussion of the first-stage
relationship between boiler sulfur controls and emissions, we
assume constant emissions from the last year of available data
(e.g., we assign 1980 levels to 1981–1984, 1985 levels to 1986–
1989, and 1990 levels to 1991–1994). Interpolating data has no
effect on our main mortality estimates, since we employ a reduced
form estimation strategy with boiler controls as the main indepen-
dent variable.

We model the dispersion of boiler-level SO2 emissions across
the country using the second iteration of the Air Pollution Emission
Experiments and Policy analysis (APEEP) atmospheric transport
model (Muller et al., 2014). This model provides a county-to-
county matrix that converts SO2 emissions into expected contribu-
tions to PM2.5 concentrations, adjusting for information on topog-
raphy, wind direction, and other such region-specific factors.
Rather than incorporate the predicted PM2.5 concentrations
directly in our treatment variable, we use the predicted PM2.5 con-
version rate as a weight to model the dispersion of boiler-level
emissions.12 We construct our measure of treatment intensity by
interacting these conversion rates by the expected intensity of the
pollution reduction due to sulfur controls. We also use the APEEP
matrix to generate predicted PM2.5 levels, for which data do not
exist, so we can approximate the marginal effect of PM2.5 on
mortality.

Given SO2 was the primary target of the ARP, we first examine
the impact on ambient SO2 levels using measures from the EPA
monitoring network. The EPA reports daily SO2 averages in
parts-per-billion (ppb). We convert daily monitor-level measures
to annual county-level measures by inverse distance weighting of
monitors within 50 miles of a county centroid. We use an unbal-
anced panel of sensors given the limited number active across
the entire sample period. Analysis using a balanced panel yields
similar results but with fewer applicable counties.

To account for the possible confounding role of weather, we
flexibly control for temperature and rainfall using data from the
National Oceanic and Atmospheric Administration (NOAA). We
aggregate station-day variables up to the county-year level using
inverse distance squared weights, using all monitors within a max-
imum distance to 100 miles between county centroid and weather
stations. We employ data from the County Data Book (CDB) and
the regional economic accounts from the Bureau of Economic Anal-
ysis (BEA) to measure economic and demographic factors.
3.2. Measure of treatment

We define our treatment variable, weighted exposure to sulfur
controls (SC), as a combination of baseline plant efficiency, sulfur
control installations on boilers, and emission transport weights.
12 For example, the matrix conversion rate between a ton of SO2 released in Franklin
County, MO and a microgram per cubic meter (lg/m3) of PM2.5 in the same county is
1.87 X 10e-5. The conversion for nearby St. Louis, MO County (FIPS 29189) is 1.09 X
10e-6, and for further away Wayne County, MI (FIPS 26163) is 5.7 X 10e-7. EPA data
on boiler-level emissions are in tons, and the transport matrix program natively uses
short tons, requiring a basic conversion of 1.102311 short tons per ton.

https://www.epa.gov/so2-pollution/sulfur-dioxide-basics
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Since we expect control installations to have larger effects on boil-
ers that were initially ‘‘dirtier”, we incorporate heat input in 1985,
the metric used for initial assignment of ARP permits, as a measure
of plant efficiency. Higher heat input translates to less efficient
electricity production, with more fuel required per unit of energy
output, and thus an expected higher pollution level, all else con-
stant. Therefore, a sulfur control installed on a more inefficient
plant should yield a larger improvement in emissions. The incorpo-
ration of the transport model allows the effects of the installed sul-
fur controls to vary geographically, where this variation is driven
by the SO2-PM2.5 conversion matrix by county. This yields the fol-
lowing equation:
SCct ¼
X

i
fðPhaseI Sulfur Controlsit � heati;1985Þ ð1Þ

SCct is the measure of exposure for county c in year t, which
accounts for sulfur control installations on Phase I boiler i present
in year t throughout the U.S.. f() is the atmospheric transport model
that weights by the strength of the relationship between emissions
at plant i and PM2.5 in county c, Ri() denotes the sum of all Phase I
boilers with sulfur-controlling technology installed as of the spec-
ified year, and heati,1985 is the initial, plant-specific heat input, in
BTUs, in 1985. To simplify interpretation of coefficients, we stan-
dardize the SC variable to have mean zero and standard deviation
of one for our regressions.

For an example of (1), we discuss here the treatment intensity
Franklin County, MO would receive from the top three outside
county contributors with upgrades present by 1995: Gibson, IN
(FIPS 18051), Carroll, KY (FIPS 21041), and Warrick, IN (FIPS
Fig. 1. Installation of sulfur controls and boiler emissions. Notes: See Section 3.2 for d
Markets Acid Rain power plant data set. Dashed vertical line indicates the beginning of
confidence intervals. In Panel C, data prior to 1995 are only available in 1985 and 1990. H
available power plant data — see Section 3.1 for details.
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18173). In practice, emissions from more counties contribute, but
we focus on the top 3 for illustrative purposes. The conversion
matrix assigns the following receiving weights for Franklin, MO:
3.55 X 10e-7 for Gibson, IN, 2.8 X 10e-7 for Carroll, KY, and
2.72 X 10e-7 for Warrick, IN. Gibson, IN had one Phase I sulfur con-
trol in 1995, on a boiler with an initial heat input of 34.7 million
(MM) BTUs. Carroll, KY had one Phase I sulfur control in 1995, on
a boiler with an initial heat input of 26.1 MM BTUs. Warrick, IN
had two Phase I plants with sulfur controls in 1995, with initial
heat inputs of 13.6 MM BTUs and 5.8 MM BTUs. If SCct were based
on only these three outside counties, in 1995 Franklin County
would receive a value of:

SCFranklin;1995 ¼ 34:7MM � 0:000000355þ 26:1MM � 0:00000028½
þ 13:6MMþ 5:8MMð Þ � 0:000000272
As the majority of SO2 (and modeled PM2.5) reductions occur in

1995, we focus on upgrades by 1995 for our event studies. In an
alternate reduced form model, we allow for annual variation in
upgrades. We also explore models in which we weight installed
sulfur controls by initial baseline SO2 emissions, models in which
we treat all upgrades equally regardless of plant size, and models
that allow for controls installed on both Phase I and Phase II plants.
These changes have minimal impact on our main findings.

Fig. 1 illustrates how the policy affected plant behavior, and
how we operationalize this to address data limitations. Panel A
of Fig. 1 shows the running tally of installed controls on Phase I
boilers, by month and year. The majority of Phase I control installs
occurred either just before, during, or shortly after 1995, and
etailed discussion of each figure. All figures based on data from the EPA Clean Air
enforcement of the Acid Rain Program. Thick dashed lines of Panel B indicate 95%
ollow markers in 1986–1989 and 1991–1994 indicate imputation from most recent



Fig. 2. Exposure to sulfur controls on phase I ARP boilers by selected year. Notes: Figures show county-level exposure to our measure of treatment: number of sulphur
controls, weighted by initial heat output and the atmospheric transport matrix, which we describe in Section 3.2.
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remain largely stable after that. While some installs occur before
1995, the clear majority happen in the first year of enforcement,
and many of those that happen earlier occur in the final months
of 1994, which we expect would have little effect on average pol-
lution and mortality levels in that year.

To understand the impact of these sulfur control installations
on emissions, Panel B of Fig. 1 shows an event study of Phase I
boiler-level emissions, where the relevant treatment year (0) is
the year in which plants install sulfur control technology.13 The
model, which controls for year and boiler fixed effects (with stan-
dard errors clustered at the boiler level), shows that a Phase I boiler
with such technology installed saw immediate reductions in SO2
output. We split all Phase I plants with upgrades into above and
below median level of heat input in 1985, effectively dividing the
sample by boiler efficiency. For our treatment variable definition,
we assume more inefficient boilers (higher heat input) will experi-
ence larger emissions reductions from installs of sulfur controls.
Our estimates support this: the average boiler with above-median
heat input reduced SO2 emissions by approximately 50,000 tons,
while the average boiler below the median heat input reduced SO2
emissions by closer to 10,000 tons.

Panel C of Fig. 1 shows the trends in total boiler emissions by
year and plant phase, which also illustrates that (1) the majority
of reductions appear in 1995, and (2) effectively all reductions
are due to Phase I plant behavior.14 On net, Phase I plants reduced
SO2 output by around 50 million tons in 1995, while Phase II plants
saw largely no change, and even small increases early on.

Fig. 2 illustrates county-level values of our sulfur control expo-
sure in 1985, 1995, and 2005. The figure highlights two important
factors. First, exposure to Phase I plants with sulfur controls is zero
in the beginning of our sample, with substantially higher levels
across the country in 1995. Second, from 1995 to 2005, there is lit-
13 Appendix Fig. A1 illustrates a similar idea, but splitting by Phase I and Phase II
boilers rather than Phase I heat input, showing the majority of reductions are due to
Phase I plants.
14 We cannot directly verify the magnitude of change between 1994 and 1995, as
plant-specific output data are not available between 1991 and 1994.
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tle change in county-level exposure to the number of boilers with
sulfur controls, as most of the large additions occurred in the first
year of the ARP.

3.3. Dynamic regression model

To identify the link between the ARP and mortality across time,
we estimate the following equation:

yct ¼ kt þ Rtbt � SCc þ RtUt � Zc þ cXct þ ac þ ect ð2Þ
The variable y is the outcome of interest in county c in year t,

often the inverse hyperbolic sine (IHS) of the age-adjusted mortal-
ity rate for four age groups (all ages, under 35, 35–64 and 65 and
over).15 The IHS function behaves similarly to the natural log func-
tion, but is robust to the inclusion of zero values, which occur when
looking at mortality rates by subgroups and cause of death in
smaller-population counties. For the denominator, we use county-
level, age-specific annual population estimates from the Surveil-
lance, Epidemiology, and End Results (SEER) Program. We focus on
cardiorespiratory-related deaths, as this contains the outcomes most
likely to be affected by PM2.5 exposure. We also present results for
all-cause internal mortality in the Appendix, and perform a falsifica-
tion test using external deaths (accidents, murders, etc.); such
deaths may change due to potentially confounding factors such as
selective migration and economic fluctuations, but not with
pollution-related health improvements. We also estimate this model
with ambient SO2 and modeled PM2.5 as the outcomes to demon-
strate the ‘‘first stage” effect of the ARP on pollution levels.

The vector ac captures county fixed effects, the vector kt cap-
tures year fixed effects, and the error term (ect) includes an idiosyn-
cratic component as well as a term clustered on the county to
allow for arbitrary serial correlation within a county. We weight
all regressions by county level age-specific population, using the
population from the first year in our sample (1985) for all years
15 See http://www.cdc.gov/nchs/data/statnt/statnt20.pdf (accessed February 2,
2020) for age adjustment using the 2000 U.S. Population.

http://www.cdc.gov/nchs/data/statnt/statnt20.pdf


Table 1
Summary statistics.

1985–
1994

1995–
2005

Panel A: Age-adjusted mortality rate (per 100,000
population)

Cardiorespiratory 516.14 430.35
External 59.75 56.74

Panel B: Economic and demographic factors
Population (1,000) 78.13 86.72
Employment (1,000) 35.36 41.26
Income per capita 24859.89 29335.70
Income maintenance programs per capita 441.22 529.84
Medicare per capita 0.82 1.27
Other public medical programs per capita 609.82 1067.17

Panel C: Pollution and upgrade exposure
Monitor-measured SO2 (ppb) 7.53 4.65
Phase 1 upgrades: heat weighted 12.10 176.13

Notes: All values excepting SO2 are from a balanced panel of 2,414 counties used in
our primary analysis. SO2 are from an unbalanced panel of monitors within 50
miles of 1,090 counties, based on availability of data. Mortality data are from the
National Vital Statistics System restricted cause of death files. Population data are
from the Surveillance, Epidemiology, and End Results (SEER) projections. Economic
variables are from the Bureau of Economic Analysis (BEA) Regional Economic
Accounts. We transform relevant values to per-capita using BEA estimates of
population, and adjust to 2010 dollars.
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to prevent endogeneity of weights (results are robust to alternate
weight choices).

Our treatment variable, SCc, is our normalized measure of
county c’s exposure to sulfur controls installed on Phase I boilers
as of 1995. We consider how the treatment effect varies separately
by year (bt), omitting 1994 as the reference year. This amounts to a
difference-in-differences estimator that compares the difference in
mortality over time between areas with varied levels of boiler con-
trol exposure in each year relative to the baseline difference in
1994. The event study coefficients reflect the marginal effect of
one standard deviation change in our treatment variable compared
to the baseline year of 1994.

We interpret the pattern of estimates of the bt coefficients as a
test for mortality effects from long-run exposure. We can infer the
ARP had no observable impact on health if all estimates of bt are
zero. If estimates reveal an immediate decline in mortality, similar
to the observed decline in SO2 emissions, this suggests a short-run
effect where the level of pollution in year t only impacts mortality
in year t. If estimates increase in years since the beginning of the
ARP in 1995 (e.g., 0 = b1995 < b1996 < . . . < b2005), this suggests imme-
diate reductions in emissions led to a building reduction in mortal-
ity from cumulative, long-run exposure.16

In addition to county and year fixed effects, we take several
steps to address possible confounding variables. The vector Xct

includes weather variables (to address the possibility of differen-
tial weather patterns in treatment counties) and the inverse hyper-
bolic sine of relevant denominator population.17 We also control for
the economic and demographic traits of each county flexibly by
interacting 1990 measures (Zc) with year fixed effects (illustrated
here with the summation across Ut). Interacting with year effects
allows one-time observed economic and demographic variables to
have time varying effects. We favor this approach over using annual
measures of control variables because annual measures could be
affected themselves by treatment, though we explore including
annual values as controls in robustness checks. Specific variables
(from the 1990 County Data Book) used for Zc include age distribu-
tion, percent male, racial and ethnic makeup, income per capita,
unemployment, land area (to reflect potential urban vs. rural differ-
ences in mortality trends), and percentage employed in various eco-
nomic sectors (manufacturing, retail, public administration, health
services, federal government employment, and state government
employment).18 These economic and demographic factors interacted
with year fixed effects control for differential changes across time.
We also estimate a model with state-year fixed effects as part of
our sensitivity analysis.19
16 Another possible explanation for this effect would be a concave pollution damage
function (Pope et al., 2015), where initial pollution drops do little to change mortality,
but additional improvements at lower baseline levels have larger marginal effects on
mortality.
17 We control for precipitation and precipitation squared, as well as the fraction of
each year in one of six 10-degree Fahrenheit bins (<30F, 30–40, 40–50, 50–60, 70–80,
and >80F), leaving 60–70 as the omitted category.
18 Age distribution controls include percentage in the following year groupings, as
provided in the County Data Book data set: 5–17, 18–20, 21–25, 25–34, 35–44, 45–54,
55–65, 65–74, and 85 and up. Racial and ethnic controls include percentage black and
percentage Hispanic.
19 While geographic trend controls are possible, controlling for county-specific time
trends potentially biases estimates in the presence of a dynamic treatment effect
(Wolfers, 2006). If we were solely examining the contemporaneous response of
mortality to the ARP, our model could credibly include county-specific time trends.
Instead we focus on estimating a dynamic treatment effect in which the ARP causes
mortality to evolve over time. County-specific trends absorb not only different
preexisting trends across counties, but also differences in the evolution of mortality
between treatment and control counties subsequent to the ARP. That is, county
specific trends partly reflect the dynamic nature of the response variable to the policy
shock, soaking up the variation in which we are particularly interested.

6

3.4. Summary statistics

Table 1 shows pre- and post-ARP means for various measures of
mortality, economic outcomes, and our measures of treatment.
Panel A shows that age-adjusted mortality rates for cardiorespira-
tory and external mortality is decreasing across the period. Panel B
shows population, wage employment, income per capita, and gov-
ernment payments per capita are all increasing. Finally, Panel C
shows ambient SO2 decreasing, while the (non-standardized) mea-
sure of exposure to sulfur controls on Phase I boilers rises substan-
tially after 1995.
4. Dynamic results

4.1. Impact on pollution

Evidence indicates the decrease in coal plant-generated SO2
after the ARP was immediate and persistent (Environmental
Protection Agency, 2006). To test if this translated to observable
changes in SO2 in surrounding areas, we use ambient SO2 levels
as the dependent variables in our dynamic reduced form model.
Panel A of Fig. 3 presents mean ambient SO2 data over time, with
counties split by the median level of our treatment variable to
facilitate comparisons. SO2 levels trend continuously downward
over time in low treatment counties. SO2 levels in high treatment
counties follow a similar trend but with a sharp drop immediately
after the ARP began.

Panel B of Fig. 3 shows results from estimating Eq. (2). Although
raw data show SO2 levels generally trending downward prior to
the ARP, the event study shows little difference in trending by
treatment intensity. Relative SO2 levels drop rapidly after the
ARP for counties with greater exposure to sulfur controls. The mar-
ginal impact of a standard deviation in weighted sulfur controls is
approximately 0.2 ppb in 1995 (statistically significant at 1 per-
cent). The marginal effect of our treatment measure on the reduc-
tion in SO2 grows in the later years of the ARP, though it takes an
additional 10 years to see further reductions similar to the initial
one-year drop in 1995. Column 1 of Appendix Table A1 shows
the estimates and standard errors for this figure.



Fig. 3. Rawmeans by treatment intensity and regression-adjusted marginal event studies for SO2. Notes: Panel A is a raw trend in pollution collapsed by above and below the
median of our measure of treatment, which we describe in Section 3.2. Panel B is an event study using a continuous measure of our treatment, as we describe in Eq. (2).
Plotted values reflect the impact of a standard deviation in our normalized treatment, as compared to the base year of 1994. Dashed vertical line indicates the beginning of
enforcement of the Acid Rain Program. Thick dashed lines indicate 95% confidence intervals.
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We also present results for modeled PM2.5 using above and
below split, shown in Appendix Fig. A2. Darker markers illustrate
years in which true boiler emissions were unavailable and interpo-
lated using data from surrounding years. Similar to the SO2 find-
ings, we find an abrupt decrease in modeled PM2.5 after the ARP.
The effect on modeled PM2.5 is largely flat during the 1995–
2005 period. This immediate reduction in emissions, followed by
smaller to no reductions in later years, underlies our identifying
variation to separate the effects from short- and long-run pollution
exposure.
20 Appendix Fig. A5 replicates our falsification test using external mortality as the
outcome but focuses on ages 35–64. We find little evidence of a change in trends or
levels around the ARP, though estimates are sufficiently noisy.
4.2. Impact on mortality

Fig. 4 shows the raw plot for cardiorespiratory and external
death rates by treatment intensity counties. Cardiorespiratory
mortality rates decrease across time, with the gap between the
two groups largely stable leading up to 1995. Following the ARP,
mortality rates trend down relatively quicker in high treatment
counties. External mortality rates also generally trend down but
rise toward the end of the time period. Unlike cardiorespiratory
mortality, external mortality moves in parallel fashion for both
groups the entire time period. These patterns are consistent with
the ARP having effects on mortality, but only for causes related
to pollution exposure.

Fig. 4 also presents our main event study results for the two
outcomes based on Eq. (2). As mortality outcomes are the inverse
hyperbolic sine of deaths per 100,000 population, coefficients rep-
resent an approximate percentage change in mortality rates rela-
tive to 1994 from a standard deviation change in treatment
exposure. There is no statistically significant difference in the years
immediately preceding the ARP. After the ARP, estimates imply
exposure to sulfur controls correlates with a gradual and steady
decrease in mortality. While effects in 1995 are statistically indis-
tinguishable from zero, by 2005, we estimate that cardiorespira-
tory mortality decreased by around 0.4 percent per standard
deviation of treatment (statistically significant at 5%). Furthermore,
the coefficient estimate in 2005 is significantly different from the
estimate in 1995, suggesting mortality effects grew over time.
Given the immediate drop in SO2 emissions after the ARP, the pat-
tern of our mortality estimates support the notion of a long-term
effect from cumulative exposure.

For external mortality, we find no statistically significant effect
of treatment. Standard errors are sufficiently large such that we
cannot fully reject the presence of effects comparable in size to
the cardiorespiratory effect, but the absence of trends across the
entire time period – in particular a trend that aligns with cardiores-
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piratory mortality – supports that external mortality is unrelated
to the ARP. Appendix Fig. A3 shows our results for all-cause inter-
nal mortality – it follows a similar pattern to cardiorespiratory
effects, though there are possible differential trends from 1985–
1990.

Appendix Fig. A4 shows how different combinations of control
variables affect our estimates. We find treatment correlates with
similar decreases in mortality following the ARP, regardless of
our choice of controls. With just basic year and county fixed effects,
there are some suggestive differences in mortality between 1985
and 1990, though any such pre-trend disappears by 1991. Adding
weather variables does little to change estimates. Once we control
for population and year-effect interactions with demographic
descriptors, pre-ARP estimates are near zero.

4.3. Effects by age

In Fig. 5, we present results by age to explore whether effects
arise for more susceptible segments of the population or generalize
more broadly across the population. We present event study
results for all ages, under 35, 35–64, and 65 and older; columns
2–7 of Appendix Table A1 show the estimates and standard errors
associated with these figures as well as those for all-cause internal
mortality. Although estimates for the under-35 age group are
noisy, there is no evidence to suggest an effect exists for this group.
For both the 35–64 and over-65 group, we find a pattern of effects
similar to our all age findings. For the 35–64 age group, a standard
deviation increase in treatment reduced mortality by 1.6% by 2005,
which is statistically different from both zero and the 1995 esti-
mate at 1%. The effect in 2005 was smaller at 0.2% for the 65 and
over group, though it reached as high as 0.4% in 2003. This smaller
effect for the over-65 group comes from a much larger baseline
mortality rate, and thus translates to a greater overall change in
level of deaths for the oldest group. The suggestive evidence of a
cumulative effect for those age 35–64 demonstrates potential for
long-term exposure to pollution effects that extend into the prime
working age population.20

4.4. Robustness checks

Appendix Fig. A6 shows results that estimate impacts on car-
diorespiratory mortality for all ages using alternative specifications



Fig. 4. Age-adjusted mortality for all ages: raw means by treatment intensity and regression-adjusted marginal event studies. Notes: Panels A and B are raw trends in the
inverse hyperbolic sine of age-adjusted mortality rates, collapsed by above and below the median of our measure of treatment, which we describe in Section 3.2. Panels C and
D are event studies using a continuous measure of our treatment, as we describe inEq. (2). Plotted values reflect the impact of a standard deviation in our normalized
treatment, as compared to the base year of 1994. Dashed vertical line indicates the beginning of enforcement of the Acid Rain Program. Thick dashed lines indicate 95%
confidence intervals.
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to assess the robustness of our results. The figure shows 95 percent
confidence intervals of our main estimates for context, along with
event study results for 10 alternate models. We first assess sensi-
tivity to our measures of population given that annual population
at the county level is measured with error. In our first permutation,
we replace the IHS of population with the CDB data on population
in 1990 interacted with year fixed effects. In our second permuta-
tion, we omit our CDB age controls and control for the annual share
in various age groups using the SEER population estimates (e.g., of
the age 35–64, what percentage falls in the 35–44 category). In our
third permutation, we use mortality rates that are not age-
adjusted. Our fourth permutation uses annual population esti-
mates as weights (rather than constant baseline population
weights). In nearly all years and all models, our estimates lie
within the 95% confidence intervals of our original estimate – the
only exception is in the model without age adjustment where
the early years’ estimates are slightly higher.

We next explore the role of non-pollution changes which might
also alter mortality. We do so in three ways. First, we re-run our
analysis adding state-by-year fixed effects, which control for
state-level policy changes that might drive health. Second, we omit
from our analysis all counties that have a Phase I plant, which were
the most heavily regulated under the policy. If economic shocks are
localized around changes at the plant level, removing these coun-
ties from our sample removes local economic effects. Third, we add
additional economic controls of income per capita, wage employ-
ment, Medicare per capita, income maintenance per capita, and
additional public medical spending per capita, all from BEA regio-
nal economic accounts. In these cases, estimates remain within the
confidence intervals of our initial estimates.
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Given we use mortality rates per 100,000 population, and the
wide range of county population sizes, we favor a model with
weights to help with potential heteroskedasticity (Solon et al.,
2015). To verify that results are not sensitive to our choice to use
weights, we also replicate our main model without weights. As
with our other robustness checks, the majority of the estimates fall
within the 95% confidence interval of our main model, and the gen-
eral pattern of effects remains the same. Our final test replaces the
inverse hyperbolic sine of mortality rates with the natural log of
mortality rates, with little change to our main estimates.
4.5. Assessing behavioral responses to the ARP

We further address the concerns that other factors might influ-
ence differential trends in health by treatment exposure by explor-
ing impacts on economic outcomes. Appendix Fig. A7 shows four
potentially indicative outcomes in our dynamic model: wage
employment, income per capita, population, and a measure of
migration using Internal Revenue Service (IRS) tax data. In each
case, we repeat Eq. (2), with the small change that we omit our
IHS of population on the right hand side (as population itself is
one of our outcomes of interest). Panel A shows results for wage
employment as measured in the regional economic accounts data
from the BEA. While the occasional year is statistically different
from 1994, there is no trend or pattern to the variation. Panel B
shows income per capita, provided in the same data set. Again,
there does not appear to be a distinct pattern either before or after
the ARP. Panel C shows total population as provided in the SEER
data. Despite statistical significance in occasional years, no discern-
able pattern arises.



Fig. 5. Regression-adjusted marginal event studies for age-adjusted cardiorespiratory mortality by age group. Notes: All graphs are event studies using a continuous measure
of our treatment, as we describe in Eq. (2). Plotted values reflect the impact of a standard deviation in our normalized treatment, as compared to the base year of 1994. Dashed
vertical line indicates the beginning of enforcement of the Acid Rain Program. Thick dashed lines indicate 95% confidence intervals.
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Finally, Panel D shows estimates for migration as the outcome
variable. We label this ‘‘Net Income Exemptions” per 100,000 pop-
ulation because it is based on IRS estimates of county-to-county
migration, measured by using the number of exemptions listed
on tax forms. These data are only available from 1990 onward.
To construct net exemptions, we subtract outgoing exemptions
from incoming exemptions, thus measuring the total net flow of
individuals – a positive number means a net gain in population
via in migration. We find limited evidence of statistically signifi-
cant effects, though we find a U-shaped pattern that bottoms out
in 1994. These effects are economically small, implying a net
inflow change of no more than 50 persons per 100,000 per stan-
dard deviation in treatment. Even under the strong assumption
that none of these additional individuals died that year, this would
decrease our treatment effect by 0.05%, which is one tenth the
magnitude of our treatment effect of 0.5% in the later years.21
5. Static results

5.1. Static regression model

To quantify the per-unit effect of pollution, we take the follow-
ing steps. First, we simplify our model as follows:

yct ¼ kst þwSCct þ RtU
sc � Zc þ csXct þ as

c þ esct: ð3Þ
This is similar to Eq. (2), with the modification that x is the av-

erage annual effect of our reduced-form emissions control installa-
tion on mortality, and SCct varies by year rather than being a
21 Based on our pre-ARP mean of approximately 516 cardiorespiratory deaths per
100,000 population, the initial mortality rate would be 516/100,000. Adding an
additional 50 people, none of whom die, would reduce the mortality rate to
516/100,050, a difference of 2.6*10e-6 percentage points or a relative decrease in
mortality risk of 0.05%.
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constant interacted with year fixed effects. The superscript s indi-
cates coefficients vary from the dynamic model (2). Second, in
addition to using mortality as the dependent variable to obtain a
reduced-form effect, we also estimate (3) using model-predicted
PM2.5 as the dependent variable to obtain a ‘‘first stage” estimate.
Third, we scale the reduced form coefficient by the first stage coef-
ficient to obtain an estimate of the marginal effect of PM2.5 on
mortality.

5.2. Mortality effects

While the dynamic effects of the ARP are the focus of our paper,
we also estimate the effects for plant upgrades separately pooling
pre- and post-treatment periods. Table 2 shows the OLS estimate of
the reduced form effect. This is similar to our dynamic event study
model, but assumes a common effect of treatment regardless of
years of exposure and allows treatment intensity to adjust yearly.
Here, cardiorespiratory mortality results are statistically significant
for all age groups we consider. Column 1 shows the effect of a stan-
dard deviation in treatment is around 0.3% for all ages and 65 and
older, and 0.8% for the 35–64 group. These estimates are smaller
than later-year dynamic estimates (2000–2005), illustrating the
critical nature of exploring our dynamic effects: a simple, static
value across time fails to account for the accumulating health cap-
ital and thus potentially underestimates the true health gains of
the program. Column 2 shows results for external mortality. As
with our dynamic results, the effects on external mortality are eco-
nomically small and statistically insignificant, though standard
errors are large.

5.3. Estimating effects per unit of PM2.5

A lack of true data on PM2.5 until several years into the ARP
means we cannot directly estimate a per-unit effect of PM2.5.



Table 3
Estimate of change in cardiorespiratory deaths by year using 1994 baseline mortality
rates and marginal annual reduced form values.

1 2 3
Under 35 35–64 65+

Change in Deaths in 1995 �100 �732 �6546
Change in Deaths in 1996 177 966 �1689
Change in Deaths in 1997 184 �195 �6000
Change in Deaths in 1998 264 �2685 �19443
Change in Deaths in 1999 �66 �1810 �15388
Change in Deaths in 2000 242 �1697 �15569
Change in Deaths in 2001 27 �3592 �13779
Change in Deaths in 2002 255 �3048 �18167
Change in Deaths in 2003 127 �2532 �20829
Change in Deaths in 2004 122 �3266 �16425
Change in Deaths in 2005 11 �4852 �11970

Notes: We derive annual mortality reductions by taking 1994 mortality rates by
county and age group, and multiplying by annual estimates of mortality reductions
and sulfur upgrade exposure metrics (see Section 3) for each county. We then sum
county-level predicted mortality changes to generate total expected changes for all
counties in our sample. We perform estimates separately for the under 35, age 35–
64, and age 65 and over groups.

Table 2
Reduced form estimates: exposure to sulfur controls and age-adjusted mortality.

1 2
Cardiorespiratory External

Panel A: All Ages
Weighted Plant Sulfur Controls �0.003*** 0.002

(0.001) (0.002)
Panel B: 35–64
Weighted Plant Sulfur Controls �0.008*** -0.001

(0.003) (0.004)
Panel C: 65+
Weighted Plant Sulfur Controls �0.003** 0.001

(0.001) (0.004)

Notes: Outcome is inverse hyperbolic sine (IHS) of internal age-adjusted mortality
rate per 100,000 age-specific population. Regressions span 1985–2005 and include
the IHS of age-specific population, county fixed effects, weather controls, and 1990
county demographic and economic characteristics interacted with year fixed effects
(see Section 3.3). We cluster all standard errors at the county level and weight by
county population in 1985. We derive the reduced form parameter estimates use
APEEP2-weighted sulfur control technology upgrades at the power plant level (see
Section 3), standardized to mean zero and standard deviation one — all coefficients
show the impact of standard deviation increase in treatment.
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Instead, using the data available from the APEEP transport model,
we construct a measure of annual modeled PM2.5 arising from
ARP-associated plants. This allows a rough instrumental variable
approximation of the effect of PM2.5 on mortality by dividing
our reduced form estimate by this ‘‘first stage” measure of how
much ARP sulfur reductions affected modeled PM2.5.

Prior research and our own investigation shows the APEEP
model accurately estimates shifts in regional PM2.5. For an in-
depth analysis of the model’s predictive ability of ambient emis-
sions, see Tschofen et al. (2019) and Sergi et al. (2020). For our
own exploration, we obtained PM2.5 data from EPA monitor read-
ings, available from 1999 onward. We then aggregate daily
monitor-level measures to annual county-level estimates. We plot
the model-predicted levels of PM2.5, based on our sulfur output
measures, against monitor-measured PM2.5 for all years in our
data with overlap (1999–2005), in Appendix Fig. A8. Since we are
most interested in the model’s ability to predict changes in
PM2.5, we also regressed monitor PM2.5 on our modeled PM2.5
and county fixed effects. The results show each additional unit of
our modeled PM2.5 correlates with an additional 0.9 units of
monitor-measured PM2.5. This suggests that, in our scenario,
changes in predicted PM2.5 are a good approximation of ambient
PM2.5 changes.

Based on a model similar to Eq. (3), we estimate the relationship
between modeled PM2.5 and our measure of treatment. The rela-
tionship here is partly mechanical because we derive PM2.5 values
using the same APEEP transport matrix we use to weight our mea-
sure of boiler sulfur controls. With that in mind, we find a standard
deviation increase in sulfur controls lowers modeled PM2.5 by 0.72
micrograms per cubic meter, statistically significant at 1%. Dividing
our 35–64 age group reduced form estimate by this gives an
approximation of an IV result of 1.1% mortality reduction per unit
of decreased baseline PM2.5.
22 For the purposes of these calculations, we use a non-standardized version of our
treatment variable.
23 We use the median VSL per life year based on their Fig. 3, and the implied
constant VSL of $4.9million.
24 For choosing a specific year for the age range, we use 2 different values for the
35–64 age group and the 65+ age group: 35 and 65 and 64 and 85. The range is largely
driven by the choice for the older age group.
5.4. Choice of treatment metric robustness checks

Appendix Table A2 shows how the estimates for all ages change
under various different choices of treatment intensity. In each case,
the treatment variable is some combination of boiler sulfur con-
trols weighted by the dispersion matrix, normalized to mean zero
and standard deviation one. Columns 1–4 gradually add weather,
demographic, and economic controls, following the models in
Appendix Fig. A3. Column 5 includes both Phase I and Phase II boi-
ler sulfur controls. Columns 6 and 7 replace the heat-weighted boi-
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ler control installations with a boiler control installations weighted
by 1985 sulfur emissions. Finally, Columns 7 and 8 weight boilers
only by the dispersion matrix and ignore differences in plant size
or initial traits. In each case, all of the predictive health effects in
the reduced form are from Phase I sulfur controls, and correspond
to a reduction of approximately 0.3% per standard deviation
increase in controls. Appendix Fig. A9 shows how our event study
results look under the alternate weighting structures, with little
change in the overall pattern.
6. Benefit valuation

To gauge the magnitude of the estimated mortality effects, we
calculate the avoided deaths per year in three different age groups:
under 35, 35–64, and 65+. We take the 1994 age-appropriate mor-
tality rates of each county in our sample, multiply by the annual
reduced form estimate for each year, and then multiply by the
county-specific value of the reduced form variable (in this case,
our measure of SCct).22 We then aggregate up to totals for all coun-
ties in our sample for a single age group/year value. Table 3 shows
the results, indicating the number of avoided deaths increasing over
time within each age group. The number of avoided deaths is gener-
ally higher in the 65+ age group despite percentage changes being
smaller, which is consistent with the fact that baseline mortality
rates increase with age. Based on our estimates, there was effectively
no change in the under 35 mortality group. There were up to 5,000
fewer annual cardiorespiratory deaths for the 35–64 age group
(highest in 2005), and up to 21,000 fewer annual cardiorespiratory
deaths for the 65 and older age group (highest in 2003).

Differential numbers of avoided deaths by age also suggest
valuing mortality improvements using a constant VSL is inappro-
priate; the loss in life expectancy is considerably larger for younger
ages. We instead value mortality improvements using age-specific
VSL estimates from Aldy and Smyth (2014) and compare them to
valuations using a constant VSL.23 Using age-specific VSLs, we cal-
culate a mortality benefit that ranges from $51 billion to $109 billion
in 2005 alone, depending on which age value we choose for each age
range.24 If instead we use a constant VSL of $4.9 million, we estimate
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mortality benefits of $82 billion in 2005. Our finding of a large mor-
tality effect for a younger age group suggests previous estimates of
mortality benefits using constant VSLs were significantly
undercounted.
7. Conclusion

The Acid Rain Program caused rapid and lasting improvements
in ambient air quality, with health benefits that accumulated grad-
ually over time. Using variation in installation of sulfur control
technologies on regulated boilers, combined with a model of atmo-
spheric transport and conversion between SO2 and PM2.5, we
show cardiorespiratory mortality rates decreased in a manner con-
sistent with long-run cumulative pollution exposure being an
important health input. While emissions declined rapidly, mortal-
ity rates among those 35 and older decreased gradually. For the
35–64 age group, reductions in mortality risk from a standard devi-
ation increase in sulfur control exposure grew from undetectable
in the first year of the ARP to 1.6% 10 years later.

Our findings provide unique evidence that long-run exposure to
pollution has detrimental effects on middle-aged individuals.
These effects significantly increase the total mortality benefits
Fig. A1. Average impact of sulfur controls by acid rain program phases I and II. Notes: Fi
Dashed vertical line indicates the installation of new sulfur controls at the boiler level
discussion.
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from the ARP. We estimate the value of benefits in terms of annual
lives saved as ranging from $51 billion to $109 billion by 2005, far
exceeding estimated program costs of around $3 billion per year
(Chestnut and Mills, 2005). The size of these mortality benefits
makes the ARP stand out as one of the most cost-effective environ-
mental regulations to date.

While we focus on the mortality effects from long-run expo-
sure, there remain the full range of health and human capital out-
comes potentially affected by the improvement in air quality.
Quasi-experimental research shows effects from short-run expo-
sure on educational outcomes (Sanders, 2012, Isen et al., 2017,
Bharadwaj et al., 2017), worker productivity (Graff Zivin and
Neidell, 2012; Chang et al., 2016, 2019), and morbidity
(Schlenker and Walker, 2016). As we find mortality benefits from
long-run exposure are quite different from short-run exposure,
the same may be true for these other, important outcomes. Further
understanding the effect from long-run exposure on these out-
comes represents a fruitful area for future research.
Appendix
gure based on data from the EPA Clean Air Markets Acid Rain power plant data set.
. Thick dashed lines indicate 95% confidence intervals. See Section 3.2 for detailed



Fig. A2. Rawmeans by treatment intensity for model-estimated PM2.5. Notes: Figure shows a raw trend in model estimates of PM2.5 pollution, collapsed by above and below
the median of our measure of treatment, sulfur control upgrades active in a given year, which we describe in Section 3.2. We generate PM2.5 values using the APEEP transport
model and data from the EPA on plant-specific SO2 emissions. Data prior to 1995 are only available in 1985 and 1990. Hollow markers in 1986–1989 and 1991–1994 indicate
imputation from most recent available power plant data | see Section 3.1 for details.

Fig. A3. Age-adjusted internal mortality for all ages: raw means by treatment intensity and regression-adjusted marginal event studies. Notes: Panel A is raw trends in the
inverse hyperbolic sine of age-adjusted internal mortality rates, collapsed by above and below the median of our measure of treatment, which we describe in Section 3.2.
Panel B is an event study using a continuous measure of our treatment, as we describe in equation 2. Plotted values reflect the impact of a standard deviation in our
normalized treatment, as compared to the base year of 1994. Dashed vertical line indicates the beginning of enforcement of the Acid Rain Program. Thick dashed lines indicate
95% confidence intervals.
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Fig. A5. Age-adjusted external mortality for 35–64: regression-adjusted marginal event study. Notes: Figure is an event study using a continuous measure of our treatment,
as we describe in Eq. (2). Plotted values reflect the impact of a standard deviation in our normalized treatment, as compared to the base year of 1994. Dashed vertical line
indicates the beginning of enforcement of the Acid Rain Program. Thick dashed lines indicate 95% confidence intervals.

Fig. A4. Impact of adding covariates to regression-adjusted marginal event study of cardiorespiratory mortality for all ages. Notes: Figure shows the impact of adding various
different sets of covariates to Eq. (2), as the legend describes –– see Section 4.2 for details.
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Fig. A6. Alternative specifications for regression-adjusted marginal event study of cardiorespiratory mortality for all ages. Notes: Dashed thick lines indicate 95% confidence
intervals of our main estimates from Fig. 4C. Each additional line represents the coefficients from a model we estimate with the changes we note in the figure legend. We
detail each model change in Section 4.4.

Fig. A7. Regression-adjusted marginal event studies: economic and population outcomes. Notes: Figures are event studies using a continuous measure of our treatment, as
we describe in Eq. (2), but without controls for population. Plotted values reflect the impact of a standard deviation in our normalized treatment, as compared to the base year
of 1994. Dashed vertical line indicates the beginning of enforcement of the Acid Rain Program. See Section 4.5 for details. Thick dashed lines indicate 95% confidence intervals.
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Fig. A9. Alternative weighting structures for measures of ARP exposure intensity. Notes: Figure shows different weighting structures for treatment intensity and impacts on
all-age cardiorespiratory mortality. The first weights by boiler-specific heat output in 1985, our main specification corresponding to Panel C of Fig. 4. The second replaces heat
output with sulfur emissions in 1985. The third treats all installs equally, with no additional weighting.

Fig. A8. Correlation between APEEP2 model-based PM2.5 and monitor-based PM2.5. Notes: Figure shows the relationship between our atmospheric transport model
estimates of ARP-related PM2.5 generation and PM2.5 levels, aggregated to the county level, from monitors within 50 miles of a county centroid. Monitor data are not widely
available prior to 1999. We use an unbalanced panel of monitors within 50 miles of 1,822 counties to maximize coverage.
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Table A1
Reduced form of exposure to upgraded ARP boilers.

1 2 3 4 5 6 7

Internal Cardiorespiratory

SO2 All 35–64 65+ All 35–64 65+

Weighted Plant Sulfur Controls X 1985 0.008 0.002** 0.005** 0.001 0.002 0.004 0.003
(0.054) (0.001) (0.002) (0.001) (0.002) (0.005) (0.002)

Weighted Plant Sulfur Controls X 1986 0.029 0.002** 0.004 0.002** 0.001 0.000 0.002
(0.038) (0.001) (0.003) (0.001) (0.002) (0.006) (0.002)

Weighted Plant Sulfur Controls X 1987 0.023 0.002 0.006*** 0.001 0.002 0.008** 0.001
(0.042) (0.001) (0.002) (0.001) (0.002) (0.004) (0.002)

Weighted Plant Sulfur Controls X 1988 0.034 0.001 0.002 0.001 0.002 0.003 0.002
(0.037) (0.002) (0.002) (0.001) (0.002) (0.005) (0.002)

Weighted Plant Sulfur Controls X 1989 0.089*** 0.001 0.003* 0.001 0.001 0.003 0.001
(0.033) (0.001) (0.002) (0.001) (0.001) (0.004) (0.001)

Weighted Plant Sulfur Controls X 1990 0.009 0.001 0.002 �0.000 �0.001 0.004 �0.002
(0.038) (0.001) (0.002) (0.001) (0.001) (0.004) (0.002)

Weighted Plant Sulfur Controls X 1991 �0.044 0.001 0.000 0.002 0.001 0.000 0.002
(0.028) (0.001) (0.002) (0.001) (0.002) (0.004) (0.002)

Weighted Plant Sulfur Controls X 1992 �0.108*** 0.001 �0.003 0.002** 0.001 �0.002 0.001
(0.026) (0.001) (0.002) (0.001) (0.001) (0.004) (0.001)

Weighted Plant Sulfur Controls X 1993 �0.025 �0.001 �0.001 �0.001 �0.001 �0.001 �0.001
(0.021) (0.001) (0.002) (0.001) (0.001) (0.003) (0.001)

Omitted (1994) - - - - - - -
- - - - - - -

Weighted Plant Sulfur Controls X 1995 �0.224*** �0.000 �0.001 �0.000 �0.001 �0.002 �0.001
(0.058) (0.001) (0.002) (0.001) (0.002) (0.003) (0.001)

Weighted Plant Sulfur Controls X 1996 �0.247*** 0.001 �0.000 0.001 0.001 0.003 0.000
(0.054) (0.001) (0.002) (0.001) (0.001) (0.003) (0.001)

Weighted Plant Sulfur Controls X 1997 �0.225*** �0.000 �0.003 �0.000 �0.000 �0.001 �0.001
(0.044) (0.001) (0.002) (0.001) (0.001) (0.004) (0.002)

Weighted Plant Sulfur Controls X 1998 �0.332*** �0.002** �0.006** �0.002** �0.004** �0.009* �0.004***
(0.063) (0.001) (0.003) (0.001) (0.002) (0.005) (0.001)

Weighted Plant Sulfur Controls X 1999 �0.313*** �0.002 �0.005** �0.001 �0.003** �0.006 �0.003*
(0.066) (0.001) (0.002) (0.001) (0.001) (0.004) (0.002)

Weighted Plant Sulfur Controls X 2000 �0.307*** �0.002 �0.002 �0.002 �0.003* �0.006 �0.003**
(0.059) (0.001) (0.002) (0.001) (0.002) (0.004) (0.001)

Weighted Plant Sulfur Controls X 2001 �0.260*** �0.003** �0.007*** �0.001 �0.004** �0.012** �0.003**
(0.051) (0.001) (0.002) (0.001) (0.002) (0.005) (0.001)

Weighted Plant Sulfur Controls X 2002 �0.317*** �0.002* �0.004** �0.002 �0.004*** �0.010* �0.004**
(0.055) (0.001) (0.002) (0.001) (0.002) (0.005) (0.002)

Weighted Plant Sulfur Controls X 2003 �0.329*** �0.003*** �0.007*** �0.003** �0.004** �0.009** �0.004***
(0.061) (0.001) (0.002) (0.001) (0.002) (0.004) (0.001)

Weighted Plant Sulfur Controls X 2004 �0.389*** �0.003*** �0.008*** �0.002* �0.004** �0.011*** �0.003*
(0.071) (0.001) (0.002) (0.001) (0.002) (0.004) (0.002)

Weighted Plant Sulfur Controls X 2005 �0.382*** �0.003*** �0.010*** �0.002 �0.004** �0.016*** �0.002
(0.070) (0.001) (0.003) (0.001) (0.002) (0.004) (0.002)

p-value of 1995 = 2005 0.000 0.005 0.000 0.174 0.100 0.000 0.423
Counties 1.090 2.414 2.414 2.414 2.414 2.414 2,414
Observations 22.890 50.694 50.694 50.694 50.694 50.694 50,694

Notes: Table shows coefficients corresponding to graphs from Fig. 5, as well as all internal mortality by various age groups. p-value is for the test of equality between the
coefficient for 1995 and 2005.
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Table A2
Static reduced form of all-age cardiorespiratory mortality with alternate specifications and standardized treatment measures.

1 2 3 4 5 6 7 8 9

Heat-Weighted Update (Phase 1) �0.006*** �0.006*** �0.002* �0.003*** �0.004***
(0.002) (0.002) (0.001) (0.001) (0.001)

Heat-Weighted Update (Phase 2) 0.001
(0.001)

Sulfur-Weighted Update (Phase 1) �0.003*** �0.003**
(0.001) (0.001)

Sulfur-Weighted Update (Phase 2) �0.001
(0.000)

Weighted Update (Phase 1) �0.003** �0.003**
(0.001) (0.001)

Weighted Update (Phase 2) 0.001
(0.001)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Weather No Yes Yes Yes Yes Yes Yes Yes Yes
Age Distribution Controls No No Yes Yes Yes Yes Yes Yes Yes
Economic Controls No No No Yes Yes Yes Yes Yes Yes

Observations 50,694 50,694 50,694 50,694 50,694 50,694 50,694 50,694 50,694
Counties 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2,414

Notes: Each column corresponds to a different regression. Columns 1 through 4 use our main treatment with different choices of covariates, corresponding to the various lines
in Appendix Fig. A4. Column 5 adds weighted upgrades to Phase II power plants. Columns 6 and 7 replicate Columns 4 and 5 but replacing heat input with 1985 boiler-specific
SO2 output. Columns 8 and 9 replicate Columns 4 and 5 but treating all plant controls the same.
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